Articulatory control of HMM-based parametric speech synthesis driven by phonetic knowledge

نویسندگان

  • Zhen-Hua Ling
  • Korin Richmond
  • Junichi Yamagishi
  • Ren-Hua Wang
چکیده

This paper presents a method to control the characteristics of synthetic speech flexibly by integrating articulatory features into a Hidden Markov Model (HMM)-based parametric speech synthesis system. In contrast to model adaptation and interpolation approaches for speaking style control, this method is driven by phonetic knowledge, and target speech samples are not required. The joint distribution of parallel acoustic and articulatory features considering cross-stream feature dependency is estimated. At synthesis time, acoustic and articulatory features are generated simultaneously based on the maximum-likelihood criterion. The synthetic speech can be controlled flexibly by modifying the generated articulatory features according to arbitrary phonetic rules in the parameter generation process. Our experiments show that the proposed method is effective in both changing the overall character of synthesized speech and in controlling the quality of a specific vowel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vowel Creation by Articulatory Control in HMM-based Parametric Speech Synthesis

Hidden Markov model (HMM)-based parametric speech synthesis has become a mainstream speech synthesis method in recent years. This method is able to synthesise highly intelligible and smooth speech sounds. In addition, it makes speech synthesis far more flexible compared to the conventional unit selection and waveform concatenation approach. Several adaptation and interpolation methods have been...

متن کامل

Feature-Space Transform Tying in Unified Acoustic-Articulatory Modelling for Articulatory Control of HMM-Based Speech Synthesis

In previous work, we have proposed a method to control the characteristics of synthetic speech flexibly by integrating articulatory features into hidden Markov model (HMM) based parametric speech synthesis. A unified acoustic-articulatory model was trained and a piecewise linear transform was adopted to describe the dependency between these two feature streams. The transform matrices were train...

متن کامل

Perspectives for articulatory speech synthesis

Articulatory speech synthesis currently has two perspectives. (i) Technical perspective: Due to progress in common computer hardware (general increase in computation rate) and software (usability of compilers and simulation software) it is now possible to develop comprehensive phonetic models of speech production reaching nearly real-time for the calculation of acoustic speech signals. Furtherm...

متن کامل

Mage - reactive articulatory feature control of HMM-based parametric speech synthesis

In this paper, we present the integration of articulatory control into MAGE, a framework for realtime and interactive (reactive) parametric speech synthesis using hidden Markov models (HMMs). MAGE is based on the speech synthesis engine from HTS and uses acoustic features (spectrum and f0) to model and synthesize speech. In this work, we replace the standard acoustic models with models combinin...

متن کامل

Statistical Parametric Speech Synthesis Based on the Degree of Articulation

Nowadays, speech synthesis is part of various daily life applications. The ultimate goal of such technologies consists in extending the possibilities of interaction with the machine, in order to get closer to human-like communications. However, current state-of-the-art systems often lack of realism: although high-quality speech synthesis can be produced by many researchers and companies around ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008